更多>>精华博文推荐
更多>>人气最旺专家

黄超亮

领域:网易健康

介绍:在佐边良和看来,几乎所有冲绳人都对美军基地“恨之入骨”。...

揭茂生

领域:39健康网

介绍:在这过去的一年时间里,我始终不忘部队的优良作风,将不怕艰难困苦,连续奋战的精神势头融入到在疏散所工作学习的方方面面,取长补短、边学边干,终于在这收获的季节,看到自己耕耘的果实。利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版

利来国际娱乐
本站新公告利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版
md7 | 2019-01-24 | 阅读(932) | 评论(491)
完善国有资产管理体制。【阅读全文】
利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版
ixt | 2019-01-24 | 阅读(305) | 评论(110)
为什么木条、硫分别在空气里和氧气里燃烧的现象不同它说明了什么——氧气的含量越高,燃烧越剧烈。【阅读全文】
nwt | 2019-01-24 | 阅读(497) | 评论(879)
一、质量安全“十严禁”红线第十四条规定,施工单位应当严格按照专项方案组织施工,不得擅自修改、调整专项方案。【阅读全文】
8fi | 2019-01-24 | 阅读(750) | 评论(698)
”从大阪府特意赶来的山田敏正早早就赶到了集会的举办地——奥武山公园。【阅读全文】
oij | 2019-01-24 | 阅读(633) | 评论(961)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
6jh | 2019-01-23 | 阅读(643) | 评论(275)
5.在比例尺为1:40000的工程示意图上,2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为,它的实际长度约为()A....=谈谈你的收获与体会小结与思考*【阅读全文】
k7x | 2019-01-23 | 阅读(356) | 评论(497)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
hv5 | 2019-01-23 | 阅读(503) | 评论(388)
讲到那政治革命的结果,是建立民主立宪政体。【阅读全文】
利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版,利来ag旗舰厅手机版
b5l | 2019-01-23 | 阅读(44) | 评论(611)
浙江大学硕士学位论文目录3.2.2.1菌种的富集筛选与鉴定…………………………………………253.2.2.2挑选的菌株对PCB61的降解能力研究…………………………253.3结果与讨论……………………………………………………………………263.3.1分离茵的鉴定结果………………………………………………………..263.3.2高效降解菌的挑选………………………………………………………..283.3.3T29和W5的分类鉴定…………………………………………………..283.3.4生长曲线…………………………………………………………………..293.3.5两种菌对不同的碳源的利用情况……………………………………….303.4本章小结………………………………………………………………………314微生物降解PCBS性能研究………………………………………………………………..324.1引言…………………………………………………………………………….324.2材料与方法……………………………………………………………………324.2.1实验材料………………………………………………………………….324.2.2实验方法…………………………………………………………………..334.2.2.1添加不同碳源对微生物群落降解PCBl242的影响……………334.2.2.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响…………………………………………………………………….334.2.2.31PCB242对Bacillussp.W5的联苯和sp.T29和Corynebacterium苯甲酸趋药性的影响研究…………………………………………………………一334.2.2.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究….344.3结果与讨论……………………………………………………………………344.3.1添加不同碳源对微生物群落降解PCBl242的影响……………………344.3.2添加不同碳源对Bacillussp.T29和Corynebacteriumsp.W5降解PCBl242的影响………………………………………………………………..354.3.3PCBl242对Bacillussp.T29和Corynebacteriumsp.W5的联苯和苯甲酸趋药性的影响研究………………………………………………………………364.3.4不同重金属对Bacillussp.T29的苯甲酸趋药性的影响研究………….374.4本章小结………………………………………………………………………385全文研究结论与展望……………………………………………………………………39III浙江大学硕士学位论文目录5.1研究结论………………………………………………………………………395.2研究展望………………………………………………………………………395.3创新点…………………………………………………………………………………………………40参考文献………………………………………………………………………………………………….4l攻读硕士期间获得成果…………………………………………………………………….48【阅读全文】
od6 | 2019-01-22 | 阅读(981) | 评论(277)
关键词:BOT模式;高校后勤设施;风险管理山东大学硕士学位论文AbstractAstheofmarketandofdevelopmenteconomydeepeningglobalization,forbetweencountriesconcentratesondemandcompetitiontalents,andhigh—q砌itytalentisacceleratetheoftalentteamwimincreasinglyurgent.Totrainingprofessionaltherevitalizationofandforhighereducation,allcollegeshi曲comprehensivequalityanduniversitiesinChinaaresuchexpandingrapidly.However,manyproblemsemergeasschooloffundsandshabbybuildings,poorinfrastructure,shortageexpansioninefficientatthecurrentstatusoflogisticsmanagement.Aimedimproving【阅读全文】
mzo | 2019-01-22 | 阅读(755) | 评论(672)
全国人大行使的四项职权有“最高”两字,而全国人大常委会作为全国人大的常设机关,在全国人大闭会期间行使部分职权,故其行使的四项职权没有“最高”两字。【阅读全文】
6fh | 2019-01-22 | 阅读(779) | 评论(881)
日韩之间的矛盾由来已久。【阅读全文】
u5j | 2019-01-22 | 阅读(746) | 评论(358)
”杭州青少年活动中心也开设有和编程有关的兴趣班,今年招生多达1400多人。【阅读全文】
5pn | 2019-01-21 | 阅读(98) | 评论(560)
《星动亚洲》第四季首期节目选在了极具文化特色的少林寺开始青少年成长旅程的历练。【阅读全文】
o5s | 2019-01-21 | 阅读(112) | 评论(212)
督促小组成员共同搞好学习,促进本小组成员共同进步,营造积极的组内互动学习氛围;2、以身作则,多关心、帮助本组成员;3、负责收生活费、背书,改小组成员的作业,如实记载本小组成员的操行成绩和《家校联系手册》;4、负责收齐本组各各科作业,并按时上交代表。【阅读全文】
共5页

友情链接,当前时间:2019-01-24

利来国际旗舰版 w66.com w66.com w66利来娱乐 利来ag
利来娱乐国际ag旗舰厅 利来电游官方网站 利来国际AG旗舰店 利来国际w66手机网页 亚美娱乐合法吗国际
利来国际手机版 利来国际娱乐官方网站 利来国际最老牌 www.w66.com 利来国际最给力的老牌
利来官方网站w66利来 利来国际旗舰版 w66.cm利来国际 利来国际w66平台 利来电游
威宁| 湘潭市| 桃江县| 井冈山市| 二手房| 都匀市| 常德市| 临湘市| 金昌市| 尚志市| 区。| 武强县| 石首市| 特克斯县| 宁都县| 孟村| 台江县| 永靖县| 伊宁市| 定日县| 文山县| 清新县| 怀宁县| 云浮市| 同德县| 元氏县| 冕宁县| 城固县| 银川市| 嘉黎县| 津南区| 怀来县| 开鲁县| 绥江县| 宜良县| 佛冈县| 晋州市| 莆田市| 油尖旺区| 河南省| 英超| http://m.66703245.cn http://m.17307369.cn http://m.37185124.cn http://m.29260684.cn http://m.24539019.cn http://m.68132581.cn